Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice

Proiect
5.7/10 (3 voturi)
Domeniu: Electronică
Conține 2 fișiere: doc
Pagini : 39 în total
Cuvinte : 7056
Mărime: 192.34KB (arhivat)
Publicat de: Nora-Alis Iordan
Puncte necesare: 9
Profesor îndrumător / Prezentat Profesorului: Pavel Nistiriuc, Ion Padure

Cuprins

  1. DATE INIŢIALE 3
  2. INTRODUCERE 4
  3. 1. SISTEMELE DE TRANSMISIUNI A INFORMAŢIEI PRIN FIBRE OPTICE 7
  4. 2. ALEGEREA TRASEULUI TRAFICULUI LINEIC DE TRANSMITERE A INFORMAŢIEI PRIN CABLUL OPTIC 13
  5. 3. EMIŢĂTOARELE OPTICE ŞI MODULUL OPTOELECTRONIC DE EMISIE 15
  6. 4. FOTORECEPTORII ŞI MODULUL OPTOELECTRONIC DE RECEPŢIE 23
  7. 5. CALCULUL PARAMETRILOR FIBREI OPTICE MONOMOD 31
  8. 6. DETERMINAREA LUNGIMII SECTORULUI DE REGENERARE PENTRU STIFO 34
  9. 7. DETERMINAREA VALORII PROBABILITĂŢII ERORII DE REGENERARE A SEMNALULUI LA RECEPŢIE 37
  10. CONCLUZIE 39
  11. BIBLIOGRAFIE 41

Extras din proiect

Introducere

Elaborarea şi utilizarea sistemelor optoelectronice a primei generaţii s-a început din momentul inventării şi producerii laser-ului în 1960. Utilizările lor de bază se refereau la organizarea comunicaţiilor neghidate, adică prin atmosferă şi cosmos.

Producerea fibrei optice cu coeficientul de atenuare redus (anii 1970) a contribuit la dezvoltarea sistemelor optoelectronice a generaţiei a doua, în care de acum informaţia se transmite prin cablul cu utilizarea modulaţiei intensităţii radiaţiei laser şi detectării directe a radiaţiei optice prin intermediul fotodiodei. După eficienţă, sistemele optoelectronice ale generaţiei a doua sunt superioare sistemelor de transmisiune prin cablul coaxial şi radioreleu, însă în ele se utilizează insuficient proprietatea coerenţei radiaţiei laser şi capacitatea informaţională a cablului optic.

La începutul anilor 80, în legătură cu elaborarea şi producerea fibrei optice monomod şi a diodei laser monomod, au fost elaborate sistemele optoelectronice de generaţia a treia, după cum sunt sistemele optoelectronice coerente. Sistemele optoelectronice coerente permit asigurarea vitezei de transmisiune a informaţiei 8-10 Gbps, sporirea sectorului de amplificare până la 250-300 km, utilizarea amplificatoarelor optice în linie, realizarea deplină a capacităţii informaţionale a cablului optic datorită utilizării metodelor de modulaţie a frecvenţei şi fazei, fotomixării la recepţie şi multiplexării spectrale a canalelor.

În prezent s-a stabilit următoarea schemă de transmisiune a semnalelor prin cablul optic (fig. 1), unde: SSI este sursa semnalului informaţional, MOE – modului optoelectronic de emisie, CO – cablul optic, R – regeneratorul, MOR – modulul optoelectronic de recepţie, RSI – receptorul semnalului informaţional, SAEE – sursa de alimentare cu energie electrică.

În schema prezentată semalul informaţional de la SSI modulează purtătoarea optică a emiţătorului optic din componenţa MOE, adică semnalul electric informaţional prin intermediul emiţătorului optic este convertat într-un semnal optic. Purtătoarea optică modulartă în continuare se injectează în fibrele CO.

Fig. 1

Luând în consideraţie că CO posedă anumit coeficient de atenuare, purtătoarea optică, propagându-se prin CO, se va atenua şi peste o anumită lungime a CO, numită lungimea sectorului de regenerare, se amplasează regeneratoarele (amplificatoarele) R. În regeneratoarele R semnalul se amplifică, i se restabileşte forma iniţială şi relaţiile respective în timp. De la ieşirea regeneratorului R purtătoarea optică modulată se injectează în următorul sector al CO. Numărul sectoarelor de regenerare şi, prin urmare, numărul regeneratoarelor R se determină cu valoarea atenuării traficului lineic ce constă din CO şi regeneratoarele R şi distanţa dintre staţiile terminale.

La recepţie purtătoarea optică modulată este detectată de fotoreceptorul din componenţa MOR şi convertată din semnal optic în semnal electric. Apoi semnalul electric se amplifică în regeneratorul R, i se restabileşte forma iniţială şi relaţiile în timp şi în continuare este interceptat de RSI.

Este natural că SSI, MOE, MOR, RSI şi regeneratoarele R necesită de a fi alimentate cu energie electrică de la SAEE. Regeneratoarele se alimentează cu energie electrică de la sursele staţiilor terminale, adică se alimentează de la distanţă sau de la surse de alimentare autonome (acumulatoare). Pentru alimentarea cu energie electrică a regeneratoarelor de la distanţă în CO sunt prevăzute conductoare metalice din cupru.

Elementele importante ale sistemelor de transmisiuni ale informaţiei prin cablul optic (STICO) sunt: emiţătorul optic, fotoreceptorul şi regeneratorul.

În STICO în calitate de emiţătoare optice se utilizează diodele electroluminescente (DEL) şi diodele laser (DL), confecţionate pe baza semiconductorilor. De obicei DEL sunt nişte emiţătoare optice cu radiaţia necoerentă şi se utilizează la distanţe reduse, iar DL sunt emiţătoare optice cu radiaţie coerentă şi se utilizează în STICO la distanţe medii şi sporite.

Preview document

Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 1
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 2
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 3
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 4
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 5
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 6
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 7
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 8
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 9
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 10
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 11
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 12
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 13
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 14
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 15
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 16
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 17
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 18
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 19
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 20
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 21
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 22
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 23
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 24
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 25
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 26
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 27
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 28
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 29
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 30
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 31
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 32
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 33
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 34
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 35
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 36
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 37
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 38
Proiectarea Sistemelor de Transmisiuni a Informației prin Fibre Optice - Pagina 39

Conținut arhivă zip

  • Proiectarea Sistemelor de Transmisiuni a Informatiei prin Fibre Optice
    • Continut.doc
    • Cuprins.doc

Alții au mai descărcat și

Monitorul

O clasificare sumara a monitoarelor ar putea fi dupa unul din criteriile : a) dupa culorile de afisare -monitoare monocrome (afiseaza doar doua...

Routing vs Switching

Primele switchuri hibride care au aparut, au fost "Switch-urile Layer3", capabile de securitate, asigurarea unei anume calitati a conexiunii...

Stabilizator de Tensiune

3. Functionarea În general, pentru realizarea stabilizatoarelor de tensiune se folosesc proprietatile diodelor. Cel mai simplu tip de...

Te-ar putea interesa și

Optimizarea Rețelelor de Telecomunicații Aferente Sectorului Electroenergetic

Introducere.13 1. REŢELELE DE TELECOMUNICAŢII ŞI ESENŢA OPTIMIZĂRII LOR.16 2. PROBLEMA ŞI NECESITATEA OPTIMIZĂRII REŢELELOR DE TELECOMUNICAŢII...

Evanghelizare și misiune creștină în mass-media

Un pedagog contemporan spunea că este într-adevăr "un privilegiu fantastic a ne putea exprima prin cuvinte, a comunica mai ales cu ajutorul unor...

Sisteme de Comunicații Optice

INTRODUCERE Sfârşitul mileniului doi şi începutul mileniului trei sunt caracterizate, printre altele, de o evoluţie fără precedent a sistemelor...

Fibra optică

1.FIBRA OPTICĂ În ultimul sfert de secol, utilizarea fibrelor optice drept mediu de transmisiune, în cadrul unor servicii de comunicaţii, s-a...

Rețele de Telecomunicații

Este evident faptul că reţeaua de telecomunicaţii evoluează către ISDN (reţea digitală cu integrarea serviciilor). Sunt prezentate aici...

Proiectarea sistemelor de transmisiuni a informației prin FO

Introducere Primele studii în domeniul dispozitivelor pentru comunicaţii optice au fost axate pe proiectarea şi elaborarea tehnicilor de...

Linii de Transmisiuni Optoelectronice

Sistemele de transmisiune a informaţiei prin fibre optice (STIFO). STIFO reprezintă un ansamblu de mijloace tehnice care asigură organizarea...

Multiplexoare-Demultiplexoare Optice

1. Introducere Multiplixarea optica cu despartirea pe lungimea de unda WDM a fost descoperita intre anii 1970-1980,astfel că in present WDM joaca...

Ai nevoie de altceva?