Autonomous Wind - Photovoltaic Hybrid Power System

Proiect
8/10 (1 vot)
Domeniu: Energetică
Conține 4 fișiere: doc, pdf
Pagini : 96 în total
Cuvinte : 9029
Mărime: 5.67MB (arhivat)
Publicat de: Costel Olariu
Puncte necesare: 12
Profesor îndrumător / Prezentat Profesorului: Andreea Forcos
Proiect Sistem Hibrid Autonom Universitatea Transilvania din Brasov

Cuprins

  1. PART I - Theory
  2. 1. Abstract 1
  3. 2 Introduction 1
  4. 3 Wind Energy Conversion Systems (WECS) 2
  5. 3 1 WT main components 2
  6. 3 2 Capacity factor 4
  7. 3 3 Basic of wind energy conversion 4
  8. 3 4 Power curve of WT 4
  9. 3 5 Fixed-speed and variable-speed WT 4
  10. 3 6 WT concepts 5
  11. 3 6 1 Fixed Speed Wind Turbines (Type A) 5
  12. 3 6 2 Partial Variable Speed Wind Turbine
  13. with Variable Rotor Resistance(TypeB) 6
  14. 3 6 4 Variable Speed WT with partial-scale
  15. frequency converter (Type C) 6
  16. 3 6 5 Variable Speed Wind Turbine with Full-scale
  17. Power Converter (Type D) 7
  18. 3 7 Power limitation 8
  19. 3 8 Turning the rotor into the wind (Yawind) 10
  20. 3 9 Turning the rotor out of the wind (Furling) 10
  21. 4 Solar Photovoltaic 10
  22. 4 1 The major advantaje of a PV systems 10
  23. 4 2 The major disadvantage of PV systems 11
  24. 4 3 Basic of PV energy conversion 12
  25. 4 4 PV model 12
  26. 4 5 PV maximum power 13
  27. 4 7 Photovoltaic Power Plants – grid connected 14
  28. 4 8 PV plant design 16
  29. 4 9 PV stand-alone systems (islanded) 17
  30. PART II - Design
  31. 5 Project objective 20
  32. 6 Wind turbine design 20
  33. 7 PV design 27
  34. 8 Battery design 37
  35. PART III - Modeling
  36. 9 Wind turbine 39
  37. 10 Photovoltaic panels 41
  38. 11 Battery bank 42
  39. 12 WT, PV and Battery 44
  40. 13 Boost-Inverter 46
  41. 14 Sizing the components 50
  42. 14 1 Rectifier Bridge 50
  43. 14 1 1 Device Proposal 51
  44. 14 1 2 Losses calculation 52
  45. 14 2 Boost Converter 53
  46. 14 2 1 Device Proposal 55
  47. 14 2 2 Losses calculation 57
  48. 14 3 PWM Single Phase Inverter 59
  49. 14 3 1 Device Proposal 61
  50. 14 3 2 Losses calculation 62
  51. 15 References 65
  52. 16 Appendix 66
  53. 16 1 Westwind turbine 10kW 66
  54. 16 2 CNPV 200MB data sheet 74
  55. 16 3 Photovoltaic 5kW project 76
  56. 16 4 SKKD 26 data sheet 79
  57. 16 5 SKM 145GB066D data sheet 83
  58. 16 6 SKM 300GB066D data sheet 89

Extras din proiect

1. Abstract

In this project, an isolated wind-photovoltaic hybrid power system with battery storage will be presented that can supply electricity to residential application with a capacity of 10Kw peak electrical power.

A hybrid power generation system consists of a 200W 32V 24 pieces mono crystal solar panel and 10kW permanent magnet synchronized generator (PMSG) wind power generation system, rotating 3600 according to direction of wind, was installed. Besides, to store the consumption excessive electric energy or in case of lack of generation, to ensure energy continuity via renewable power system, a battery bank gel jeep cycle accumulator groups were installed on the wind-solar hybrid power generation system.

In the hybrid power generation system, the data record in 10 second intervals (as kWh) was realized separately from each generation system. Monthly totals of obtained data were arranged separately in tables and graphics. As a result of the comparisons made, it was determined that the generation power of battery storage hybrid power generation system was above its consumption power and at the same time, consumption excessive electric energy was stored in proportional to its battery capacity.

2. Introduction

Renewable energy sources, such as wind energy and photovoltaic (PV) energy, are used by stand-alone systems supplying remote houses. These sources are of intermittent nature and, therefore, the stand-alone systems should include storage battery banks.

The storage battery banks improve the reliability of these systems because the excess energy is stored in the battery bank, and this energy is delivered to the load when the available energy is not sufficient. Wind energy and photovoltaic energy have complementary characteristics.

Combining wind energy and photovoltaic in one system (hybrid system) increases the reliability of this system and reduces the storage batteries. The general configuration of stand-alone hybrid wind-PV system with battery storage is shown in Fig. 1, where the generator used by the wind subsystem is a permanent-magnet

synchronous generator (PMSG).

Compared to induction generator, PMSG is sensitive to heat and of high cost. However, stand-alone hybrid wind-PV system with battery storage using induction generator is not investigated in this project. This controlled generator is used in collaboration with the PV unit to build the stand-alone hybrid system.

Fig. I.1: Stand-alone hybrid system

It is commonly known that there is a maximum voltage limit of the battery bank to protect the battery bank against overcharging. Therefore, it is required to capture the maximum power from the renewable energy source provided that the maximum voltage limit is not exceeded. The voltage constraint will be followed in this project to determine the load sharing of the PV and wind energy subsystem.

3. Wind Energy Conversion Systems (WECS)

WECS convert wind energy into electrical energy: Wind energy ->mechanical rotational energy -> electrical energy. The principal component of the WECS is the wind turbine (WT). WT rotor is coupled to the generator throught a multiple-ratio gearbox or, gearless in small power applications. Usualy induction generators, (squirrel-cage (SCIG) or doubly-fed (DFIG)), or permanent magnet synchrounous generators (PMSG) are used in WECS.

3.1. WT main components

A wind turbine has three major components: the tower, the rotor and nacelle. Generally, the rotor may have two or three blades.

Preview document

Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 1
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 2
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 3
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 4
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 5
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 6
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 7
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 8
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 9
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 10
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 11
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 12
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 13
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 14
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 15
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 16
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 17
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 18
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 19
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 20
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 21
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 22
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 23
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 24
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 25
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 26
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 27
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 28
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 29
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 30
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 31
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 32
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 33
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 34
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 35
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 36
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 37
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 38
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 39
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 40
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 41
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 42
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 43
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 44
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 45
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 46
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 47
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 48
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 49
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 50
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 51
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 52
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 53
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 54
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 55
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 56
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 57
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 58
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 59
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 60
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 61
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 62
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 63
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 64
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 65
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 66
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 67
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 68
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 69
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 70
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 71
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 72
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 73
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 74
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 75
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 76
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 77
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 78
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 79
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 80
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 81
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 82
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 83
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 84
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 85
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 86
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 87
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 88
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 89
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 90
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 91
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 92
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 93
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 94
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 95
Autonomous Wind - Photovoltaic Hybrid Power System - Pagina 96

Conținut arhivă zip

  • Autonomous Wind - Photovoltaic Hybrid Power System
    • 1-title page.doc
    • 2-IESP cuprins.doc
    • 3-Proiect IESP.doc
    • 4-Appendix.pdf

Alții au mai descărcat și

Subiecte rezolvate - electronică

1. Valoarea medie ????0 (componenta de curent continuu, sau componenta de frecvență zero) ????0=1????∫????(????)????????????0 , ????0=????0...

Curbă zilnică de sarcină

Curba zilnica de sarcina -este o reprezentare grafica a modului de variatie a puterii electrice consummate pe parcursul unei zile Forma curbei de...

Selectarea și Dimensionarea Transformatoarelor

La transformatoarele de putere, principala consecinta a curentilor armonici este cresterea pierderilor, în principal în înfasurari, datorita...

Mărimi și unități de măsură

AMPER (A) - unitate (fundamentala) de intensitate a curentului electric - Amperul este intensitatea unui curent electric constant, care mentinut in...

Ai nevoie de altceva?